IONISACION DEL AGUA
Las moleculas del agua liquida poseen una capacidad ilimitada para formar un ion hidronio y un hidroxilo.En el agua liquida unproton se combina con una molecula de agua para formar el ion hidronio En cosecuencia:reactivos H2O=h+ +oh- = ecuacion de disociacionconstante de equilibrioecuacion de disociacionpkaph-pka=log(a-)/(ha)
Ionización del agua: ácidos y bases
En el agua líquida hay una leve tendencia a que un átomo de hidrógeno salte del átomo de oxígeno al que está unido covalentemente, al otro átomo de oxígeno al que se encuentra unido por un puente de hidrógeno. En esta reacción se producen dos iones: el ion hidronio (H3O+) y el ion hidróxido (OH-). En cualquier volumen dado de agua pura se encuentra ionizado de esta forma un número pequeño, pero constante, de moléculas de agua. El número es constante porque la tendencia del agua a ionizarse se contrapesa con la tendencia de los iones a reunirse. Así, aunque algunas moléculas están ionizándose, un número igual de otras moléculas está formándose; este estado se conoce como equilibrio dinámico.
Cuando el agua se ioniza, un núcleo de hidrógeno (o sea, un protón) se desplaza del átomo de oxígeno al cual se encuentra unido covalentemente, al átomo de oxígeno con el que establece un puente de hidrógeno. Los iones resultantes son el ion hidróxido cargado negativamente y el ion hidronio cargado positivamente. En este diagrama, las esferas grandes representan al oxígeno y las pequeñas al hidrógeno.
Ionización del agua
En el agua pura, el número de iones H+ iguala exactamente al número de iones OH- ya que ningún ion puede formarse sin el otro cuando solamente hay moléculas de H2O presentes. Sin embargo, cuando una sustancia iónica o una sustancia con moléculas polares se disuelve en el agua, pueden cambiar los números relativos de los iones H+ y OH-.
Por ejemplo, cuando el ácido clorhídrico (HCl) se disuelve en agua, se ioniza casi completamente en iones H+ y Cl-; como resultado de esto, una solución de HCl (ácido clorhídrico) contiene más iones H+ que OH-. De modo inverso, cuando el hidróxido de sodio (NaOH) se disuelve en agua, forma iones Na+ y OH-; así, en una solución de hidróxido de sodio en agua hay más iones OH- que H+.
Una solución es ácida cuando el número de iones H+ supera al número de iones OH-, de modo contrario, una solución es básica -o alcalina- cuando el número de iones OH- supera al número de iones H+. Así, un ácido es una sustancia que provoca un incremento en el número relativo de iones H+ en una solución, y una base es una sustancia que provoca un incremento en el número relativo de iones OH-.
Los ácidos y bases fuertes son sustancias, tales como el HCl y el NaOH, que se ionizan casi completamente en agua, dando como resultado incrementos relativamente grandes en las concentraciones de iones H+ y OH-, respectivamente. Los ácidos y bases débiles, por contraste, son aquellos que se ionizan sólo ligeramente, dando como resultado incrementos relativamente pequeños en la concentración de iones H+ u OH-. Dada la fuerte tendencia de los iones H+ y OH- a combinarse y la débil tendencia del agua a ionizarse, la concentración de los iones OH- disminuirá siempre a medida que la concentración de los iones H+ se incremente (como, por ejemplo, cuando se añade HCl al agua), y viceversa. En otras palabras, si un ácido y una base de fuerzas comparables se añaden en cantidades equivalentes, la solución no tendrá un exceso ni de iones H+ ni de OH-.
Muchos de los ácidos importantes en los sistemas vivos deben sus propiedades ácidas a un grupo de átomos llamado grupo carboxilo, que incluye un átomo de carbono, dos átomos de oxígeno y un átomo de hidrógeno (simbolizado como -COOH). Cuando se disuelve en agua una sustancia que contiene un grupo carboxilo, algunos de los grupos -COOH se disocian y producen iones hidrógeno. Así, los compuestos que contienen grupos carboxilo son dadores de iones hidrógeno, o ácidos. Son ácidos débiles, sin embargo, porque el grupo -COOH se ioniza sólo levemente.Entre las bases más importantes de los sistemas vivos se encuentran los compuestos que contienen al grupo amino (-NH2). Este grupo tiene una tendencia débil a aceptar iones hidrógeno, formando por lo tanto el grupo -NH3+. En tanto los iones hidrógeno son eliminados de la solución por el grupo amino, la concentración relativa de los iones H+ disminuye y la concentración relativa de los iones OH- aumenta. Grupos, tales como el -NH2, que son aceptores débiles de iones hidrógeno son, así, bases débiles.
Los químicos expresan el grado de acidez por medio de la escala de pH. El símbolo "pH" indica el logaritmo negativo de la concentración de iones hidrógeno en unidades de moles por litro. Los números cuyos logaritmos son de interés para nosotros son las concentraciones de iones hidrógeno en las soluciones, que se expresan en moles por litro.
La ionización que ocurre en un litro de agua pura da como resultado la formación, en el equilibrio, de 1/10.000.000 de mol de iones hidrógeno (y, como hemos notado previamente, exactamente la misma cantidad de iones hidróxido). En forma decimal, esta concentración de iones hidrógeno se escribe como 0,0000001 mol por litro o, en forma exponencial, como 10-7 mol por litro. El logaritmo es el exponente -7 y el logaritmo negativo es 7; con referencia a la escala de pH, se lo menciona simplemente como pH 7. A pH 7 las concentraciones de H+ y OH- libres son exactamente iguales dado que están en agua pura. Este es un estado neutro. Cualquier pH por debajo de 7 es ácido y cualquier pH por encima de 7 es básico. Cuanto menor sea el valor del pH, mayor será la concentración de iones hidrógeno. Dado que la escala de pH es logarítmica, una diferencia en una unidad de pH implica una diferencia de 10 veces en la concentración de iones hidrógeno. Por ejemplo, una solución de pH 3 tiene 1.000 veces más iones H+ que una solución de pH 6.
Una diferencia de una unidad de pH refleja una diferencia de 10 veces en la concentración de iones H+. Las bebidas cola, por ejemplo, son 10 veces más ácidas que el jugo de tomate. Los jugos gástricos son 100 veces más ácidos que las bebidas cola.
Casi toda la química de los seres vivos tiene lugar a pH entre 6 y 8. Como excepciones notables podemos mencionar los procesos químicos en el estómago de los humanos y otros animales, que tienen lugar a pH de aproximadamente 2. La sangre humana, por ejemplo, mantiene un pH casi constante de 7,4, a pesar del hecho de que es el vehículo de gran número y variedad de nutrientes y otros compuestos químicos que reparte entre las células, así como de la eliminación de desechos, muchos de los cuales son ácidos y bases.
El mantenimiento de un pH constante, un ejemplo de homeostasis, es importante porque el pH influye en gran medida en la velocidad de las reacciones químicas. Los organismos resisten cambios fuertes y repentinos en el pH de la sangre y otros fluidos corporales por medio de amortiguadores o buffers, que son combinaciones de formas dadoras de H+ y aceptoras de H+ de ácidos o bases débiles.
Los buffers mantienen el pH constante por su tendencia a combinarse con iones H+, eliminándolos así de la solución cuando la concentración de iones H+ comienza a elevarse y liberándolos cuando desciende. En los sistemas vivos funciona una gran variedad de buffers, siendo cada uno de ellos más efectivo al pH particular en el que las concentraciones del dador y del aceptor de H+ son iguales.
domingo, 10 de mayo de 2009
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario